16 research outputs found

    In Vivo Quantitative Assessment of Myocardial Structure, Function, Perfusion and Viability Using Cardiac Micro-computed Tomography

    Get PDF
    The use of Micro-Computed Tomography (MicroCT) for in vivo studies of small animals as models of human disease has risen tremendously due to the fact that MicroCT provides quantitative high-resolution three-dimensional (3D) anatomical data non-destructively and longitudinally. Most importantly, with the development of a novel preclinical iodinated contrast agent called eXIA160, functional and metabolic assessment of the heart became possible. However, prior to the advent of commercial MicroCT scanners equipped with X-ray flat-panel detector technology and easy-to-use cardio-respiratory gating, preclinical studies of cardiovascular disease (CVD) in small animals required a MicroCT technologist with advanced skills, and thus were impractical for widespread implementation. The goal of this work is to provide a practical guide to the use of the high-speed Quantum FX MicroCT system for comprehensive determination of myocardial global and regional function along with assessment of myocardial perfusion, metabolism and viability in healthy mice and in a cardiac ischemia mouse model induced by permanent occlusion of the left anterior descending coronary artery (LAD)

    Optical Imaging of Tumor Response to Hyperbaric Oxygen Treatment and Irradiation in an Orthotopic Mouse Model of Head and Neck Squamous Cell Carcinoma

    Get PDF
    Purpose: Hyperbaric oxygen therapy (HBOT) is used in the treatment of radiation-induced tissue injury but its effect on (residual) tumor tissue is indistinct and therefore investigated in this study. Procedures: Orthotopic FaDu tumors were established in mice, and the response of the (irradiated) tumors to HBOT was monitored by bioluminescence imaging. Near infrared fluorescence imaging using AngioSense750 and Hypoxisense680 was applied to detect tumor vascular permeability and hypoxia. Results: HBOT treatment resulted in accelerated growth of non-irradiated tumors, but mouse survival was improved. Tumor vascular leakiness and hypoxia were enhanced after HBOT, whereas histological characteristics, epithelial-to-mesenchymal transition markers, and metastatic incidence were not influenced. Conclusions: Squamous cell carcinoma responds to HBOT with respect to tumor growth, vascular permeability, and hypoxia, which may have implications for its use in cancer patients. The ability to longitudinally analyze tumor characteristics highlights the versatility and potential of optical imaging methods in oncological research

    Temporal and spatial changes in wall shear stress during atherosclerotic plaque progression in mice

    Get PDF
    Wall shear stress (WSS) is involved in atherosclerotic plaque initiation, yet its role in plaque progression remains unclear. We aimed to study (i) the temporal and spatial changes in WSS over a growing plaque and (ii) the correlation between WSS and plaque composition, using animal-specific data in an atherosclerotic mouse model. Tapered casts were placed around the right common carotid arteries (RCCA) of ApoE−/− mice. At 5, 7 and 9 weeks after cast placement, RCCA geometry was reconstructed using contrast-enhanced micro-CT. Lumen narrowing was observed in all mice, indicating the progression of a lumen intruding plaque. Next, we determined the flow rate in the RCCA of each mouse using Doppler Ultrasound and computed WSS at all time points. Over time, as the plaque developed and further intruded into the lumen, absolute WSS significantly decreased. Finally at week 9, plaque composition was histologically characterized. The proximal part of the plaque was small and eccentric, exposed to relatively lower WSS. Close to the cast a larger and concentric plaque was present, exposed to relatively higher WSS. Lower WSS was significantly correlated to the accumulation of macrophages in the eccentric plaque. When pooling data of all animals, correlation between WSS and plaque composition was weak and no longer statistically significant. In conclusion, our data showed that in our mouse model absolute WSS strikingly decreased during disease progression, which was significantly correlated to plaque area and macrophage content. Besides, our study demonstrates the necessity to analyse individual animals and plaques when studying correlations between WSS and plaque composition

    Contrast-enhanced micro-CT imaging in murine carotid arteries: A new protocol for computing wall shear stress

    Get PDF
    Background: Wall shear stress (WSS) is involved in the pathophysiology of atherosclerosis. The correlation between WSS and atherosclerosis can be investigated over time using a WSS-manipulated atheroscleroti

    Injectable BMP-2 delivery system based on collagen-derived microspheres and alginate induced bone formation in a time-and dose-dependent manner

    Get PDF
    The aim of the current study was to reduce the clinically used supra-physiological dose of bone morphogenetic protein-2 (BMP-2) (usually 1.5 mg/mL), which carries the risk of adverse events, by using a more effective release system. A slow release system, based on an injectable hydrogel composed of BMP-2-loaded recombinant collagen-based microspheres and alginate, was previously developed. Time-and dose-dependent subcutaneous ectopic bone formation within this system and bone regeneration capacity in a calvarial defect model were investigated. BMP-2 doses of 10 µg, 3 µg and 1 µg per implant (50 µg/mL, 15 µg/mL and 5 µg/mL, respectively) successfully induced ectopic bone formation subcutaneously in rats in a time-and dose-dependent manner, as shown by micro-computed tomography (µCT) and histology. In addition, the spatio-temporal control of BMP-2 retention was shown for 4 weeks in vivo by imaging of fluorescently-labelled BMP-2. In the subcritical calvarial defect model, µCT revealed a higher bone volume for the 2 µg of BMP-2 per implant condition (50 µg/mL) as compared to the lower dose used (0.2 µg per implant, 5 µg/ mL). Complete defect bridging was obtained with 50 µg/mL BMP-2 after 8 weeks. The BMP-2 concentration of 5 µg/mL was not sufficient to heal a calvarial defect faster than the empty defect or biomaterial control without BMP-2. Overall, this injectable BMP-2 delivery system showed promising results with 50 µg/mL BMP-2 in both the ectopic and calvarial rat defect models, underling the potential of this composite hydrogel for bone regeneration therapies

    Synaptic proteome changes in a DNA repair deficient Ercc1 mouse model of accelerated aging

    Get PDF
    Cognitive decline is one of the earliest hallmarks of both normal and pathological brain aging. Here we used Ercc1 mutant mice, which are impaired in multiple DNA repair systems and consequently show accelerated aging and progressive memory deficits, to identify changes in the levels of hippocampal synaptic proteins that potentially underlie these age-dependent deficits. Aged Ercc1 mutant mice show normal gross hippocampal dendritic morphology and synapse numbers, and Ercc1 mutant hippocampal neurons displayed normal outgrowth and synapse formation in vitro. However, using isobaric tag for relative and absolute quantification (iTRAQ) of hippocampal synaptic proteins at two different ages, postnatal days 28 and 112, we observed a progressive decrease in synaptic ionotropic glutamate receptor levels and increased levels of G-proteins and of cell adhesion proteins. These together may cause long-term changes in synapse function. In addition, we observed a downregulation of mitochondrial proteins and concomitant upregulation of Na,K-ATPase subunits, which might compensate for reduced mitochondrial activity. Thus, our findings show that under conditions of apparent intact neuronal connectivity, levels of specific synaptic proteins are already affected during the early stages of DNA damage-induced aging, which might contribute to age-dependent cognitive decline

    Click beetle luciferase mutant and near infrared naphthyl-luciferins for improved bioluminescence imaging

    Get PDF
    The sensitivity of bioluminescence imaging in animals is primarily dependent on the amount of photons emitted by the luciferase enzyme at wavelengths greater than 620 nm where tissue penetration is high. This area of work has been dominated by firefly luciferase and its substrate, D-luciferin, due to the system's peak emission (~ 600 nm), high signal to noise ratio, and generally favorable biodistribution of D-luciferin in mice. Here we report on the development of a codon optimized mutant of click beetle red luciferase that produces substantially more light output than firefly luciferase when the two enzymes are compared in transplanted cells within the skin of black fur mice or in deep brain. The mutant enzyme utilizes two new naphthyl-luciferin substrates to produce near infrared emission (730 nm and 743 nm). The stable luminescence signal and near infrared emission enable unprecedented sensitivity and accuracy for performing deep tissue multispectral tomography in mice

    Defective Connective Tissue Remodeling in Smad3 Mice Leads to Accelerated Aneurysmal Growth Through Disturbed Downstream TGF-β Signaling

    Get PDF
    Aneurysm-osteoarthritis syndrome characterized by unpredictable aortic aneurysm formation, is caused by SMAD3 mutations. SMAD3 is part of the SMAD2/3/4 transcription factor, essential for TGF-β-activated transcription. Although TGF-β-related gene mutations result in aneurysms, the underlying mechanism is unknown. Here, we examined aneurysm formation and progression in Smad3−/− animals. Smad3−/− animals developed aortic aneurysms rapidly, resulting in premature death. Aortic wall immunohistochemistry showed no increase in extracellular matrix and collagen accumulation, nor loss of vascular smooth muscle cells (VSMCs) but instead revealed medial elastin disruption and adventitial inflammation. Remarkably, matrix metalloproteases (MMPs) were not activated in VSMCs, but rather specifically in inflammatory areas. Although Smad3−/− aortas showed increased nuclear pSmad2 and pErk, indicating TGF-β receptor activation, downstream TGF-β-activated target genes were not upregulated. Increased pSmad2 and pErk staining in pre-aneurysmal Smad3−/− aortas implied that aortic damage and TGF-β receptor-activated signaling precede aortic inflammation. Finally, impaired downstream TGF-β activated transcription resulted in increased Smad3−/− VSMC proliferation. Smad3 deficiency leads to imbalanced activation of downstream genes, no activation of MMPs in VSMCs, and immune responses resulting in rapid aortic wall dilatation and rupture. Our findings uncover new possibil

    Aortic microcalcification is associated with elastin fragmentation in Marfan syndrome

    Get PDF
    Marfan syndrome (MFS) is a connective tissue disorder in which aortic rupture is the major cause of death. MFS patients with an aortic diameter below the advised limit for prophylactic surgery (<5 cm) may unexpectedly experience an aortic dissection or rupture, despite yearly monitoring. Hence, there is a clear need for improved prognostic markers to predict such aortic events. We hypothesize that elastin fragments play a causal role in aortic calcification in MFS, and that microcalcification serves as a marker for aortic disease severity. To address this hypothesis, we analysed MFS patient and mouse aortas. MFS patient aortic tissue showed enhanced microcalcification in areas with extensive elastic lamina fragmentation in the media. A causal relationship between medial injury and microcalcification was revealed by studies in vascular smooth muscle cells (SMCs); elastin peptides were shown to increase the activity of the calcification marker alkaline phosphatase (ALP) and reduce the expression of the calcification inhibitor matrix GLA protein in human SMCs. In murine Fbn1C1039G/+ MFS aortic SMCs, Alpl mRNA and activity were upregulated as compared with wild-type SMCs. The elastin peptide-induced ALP activity was prevented by incubation with lactose or a neuraminidase inhibitor, which inhibit the elastin receptor complex, and a mitogen-activated protein kinase kinase-1/2 inhibitor, indicating downstream involvement of extracellular signal-regulated kinase-1/2 (ERK1/2) phosphorylation. Histological analyses in MFS mice revealed macrocalcification in the aortic root, whereas the ascending aorta contained microcalcification, as identified with the near-infrared fluorescent bisphosphonate probe OsteoSense-800. Significantly, microcalcification correlated strongly with aortic diameter, distensibility, elastin breaks, and phosphorylated ERK1/2. In conclusion, microcalcification co-localizes with aortic elastin degradation in MFS aortas of humans and mice, where elastin-derived peptides induce a calcification process in SMCs via the elastin receptor complex and ERK1/2 activation. We propose microcalcification as a novel imaging marker to monitor local elastin degradation a

    Collagen type X is essential for successful mesenchymal stem cell-mediated cartilage formation and subsequent endochondral ossification

    Get PDF
    n tissue engineering, endochondral ossification (EO) is often replicated by chondrogenically differentiating mesenchymal stromal cells (MSCs) in vitro and achieving bone formation through in vivo implantation. The resulting marrow-containing bone constructs are promising as a treatment for bone defects. However, limited bone formation capacity has prevented them from reaching their full potential. This is further complicated since it is not fully understood how this bone formation is achieved. Acellular grafts derived from chondrogenically differentiated MSCs can initiate bone formation; however, which component within these decellularised matrices contribute to bone formation has yet to be determined. Collagen type X (COLX), a hypertrophy-associated collagen found within these constructs, is involved in matrix organisation, calcium binding and matrix vesicle compartmentalisation. However, the importance of COLX during tissue-engineered chondrogenesis and subsequent bone formation is unknown. The present study investigated the importance of COLX by shRNA-mediated gene silencing in primary MSCs. A significant knock-down of COLX disrupted the production of extracellular matrix key components and the secretion profile of chondrogenically differentiated MSCs. Following in vivo implantation, disrupted bone formation in knock-down constructs was observed. The importance of COLX was confirmed during both chondrogenic differentiation and subsequent EO in this tissue engineered setting
    corecore